Interface Engineering of Domain Structures in BiFeO3 Thin Films.
نویسندگان
چکیده
A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system.
منابع مشابه
Ferroelectric domain structures of epitaxial „001... BiFeO3 thin films
Ferroelectric domain structures of epitaxial BiFeO3 thin films on miscut 001 SrTiO3 substrates have been studied by transmission electron microscopy. BiFeO3 on 0.8° miscut substrates are composed of both 109° and 71° domains; in contrast, only 71° stripe domains are observed in BiFeO3 on 4° miscut 001 SrTiO3 substrates. The domain width in BiFeO3 on 4° miscut substrates increases as film thickn...
متن کاملDomain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO Thin Films
Adv. Mater. 2009, 21, 817–823 2009 WILEY-VCH Verlag Gm Multiferroic BiFeO3 has attracted great interest due to its promising application tomagnetoelectric devices. In addition, the high remanent polarization and piezoelectric response of BiFeO3 thin films, which are comparable to those of conventional Ti-rich lead zirconia titanate, suggested BiFeO3 as a strong candidate for lead-free nonvolati...
متن کاملTunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films
We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...
متن کاملDEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS
Title of Dissertation: DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS Junling Wang, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Manfred Wuttig, Department of Materials Science and Engineering Multiferroics, defined as materials with coexistence of at least two of the electric, elastic, and magnetic orders, have attracted enormous research activities recentl...
متن کاملEngineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes
BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxyg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2017